
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Role of Biorefinery Co-Products, Market Proximity and Feedstock Environmental Footprint in Meeting Biofuel Policy Goals for Winter Barley-to-Ethanol

doi: 10.3390/en13092236
Renewable fuel standards for biofuels have been written into policy in the U.S. to reduce the greenhouse gas (GHG) intensity of transportation energy supply. Biofuel feedstocks sourced from within a regional market have the potential to also address sustainability goals. The U.S. Mid-Atlantic region could meet the advanced fuel designation specified in the Renewable Fuel Standard (RFS2), which requires a 50% reduction in GHG emissions relative to a gasoline baseline fuel, through ethanol produced from winter barley (Hordeum vulgare L.). We estimate technology configurations and winter barley grown on available winter fallow agricultural land in six Mid-Atlantic states. Using spatially weighted stochastic GHG emission estimates for winter barley supply from 374 counties and biorefinery data from a commercial dry-grind facility design with multiple co-products, we conclude that winter barley would meet RFS2 goals even with the U.S. EPA’s indirect land use change estimates. Using a conservative threshold for soil GHG emissions sourced from barley produced on winter fallow lands in the U.S. MidAtlantic, a biorefinery located near densely populated metropolitan areas in the Eastern U.S. seaboard could economically meet the requirements of an advanced biofuel with the co-production of CO2 for the soft drink industry.
- Technion – Israel Institute of Technology Israel
- Drexel University United States
- Colorado State University United States
- United States Department of the Interior United States
- Drexel University United States
Technology, GHG mitigation, T, biofuel policy; life cycle assessment; GHG mitigation; energy security; indirect land use change, indirect land use change, life cycle assessment, energy security, biofuel policy
Technology, GHG mitigation, T, biofuel policy; life cycle assessment; GHG mitigation; energy security; indirect land use change, indirect land use change, life cycle assessment, energy security, biofuel policy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
