
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation
doi: 10.3390/en13225877
This work evaluates date palm waste as a cheap and available biomass feedstock in UAE for the production of biofuels. The thermochemical and biochemical routes including pyrolysis, gasification, and fermentation were investigated. Simulations were done to produce biofuels from biomass via Aspen Plus v.10. The simulation results showed that for a tonne of biomass feed, gasification produced 56 kg of hydrogen and fermentation yielded 233 kg of ethanol. Process energy requirements, however, proved to offset the bioethanol product value. For 1 tonne of biomass feed, the net duty for pyrolysis was 37 kJ, for gasification was 725 kJ, and for fermentation was 7481.5 kJ. Furthermore, for 1 tonne of date palm waste feed, pyrolysis generated a returned USD $768, gasification generated USD 166, but fermentation required an expenditure of USD 763, rendering it unfeasible. The fermentation economic analysis showed that reducing the system’s net duty to 6500 kJ/tonne biomass and converting 30% hemicellulose along with the cellulose content will result in a breakeven bioethanol fuel price of 1.85 USD/L. This fuel price falls within the acceptable 0.8–2.4 USD/L commercial feasibility range and is competitive with bioethanol produced in other processes. The economic analysis indicated that pyrolysis and gasification are economically more feasible than fermentation. To maximize profits, the wasted hemicellulose and lignin from fermentation are proposed to be used in thermochemical processes for further fuel production.
- University of Wisconsin–Oshkosh United States
- Departement of Chemical Engineering India
- American University of Sharjah United Arab Emirates
- University of Sharjah United Arab Emirates
- Department of Chemical Engineering Taiwan
Technology, biomass, T, gasification, pyrolysis, biofuels, energy integration; pyrolysis; gasification; fermentation; biomass; biofuels; process simulation; Aspen Plus, energy integration, fermentation
Technology, biomass, T, gasification, pyrolysis, biofuels, energy integration; pyrolysis; gasification; fermentation; biomass; biofuels; process simulation; Aspen Plus, energy integration, fermentation
