
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation

This article presents a 125-day experiment to investigate model predictive heat pump control. The experiment was performed in two parallel operated systems with identical components during the heating season. One of the systems was operated by a standard controller and thus represented a reference to evaluate the model predictive control. Both test rigs were heated by an air-source heat pump which is influenced by real weather conditions. A single-family house model depending on weather measurement data ensured a realistic heat consumption in the test rigs. The adapted model predictive control algorithm aimed to minimize the operational costs of the heat pump. The evaluation of the measurement results showed that the electrical energy demand of the heat pump can be reduced and the coefficient of performance can be increased by applying the model predictive controller. Furthermore, the self-consumption of photovoltaic electricity, which is calculated by means of a photovoltaic model and global radiation measurement data, was more than doubled. Consequently, the energy costs of heat pump operation were reduced by 9.0% in comparison to the reference and assuming German energy prices. The results were further compared to the scientific literature and short-term measurements were performed with the same experimental setup. The dependence of the measurement results on the weather conditions and the weather forecasting quality are shown. It was found that the duration of experiments should be as long as possible for a comprehensive evaluation of the model predictive control potential.
- Energy Technology Centre United Kingdom
- University of Bayreuth Germany
Heat pump, Technology, model predictive control (MPC), T, Building energy management, Building energy systems, PV self-consumption, 620, heat pump, Model predictive control (MPC), building energy systems, HVAC systems, building energy management
Heat pump, Technology, model predictive control (MPC), T, Building energy management, Building energy systems, PV self-consumption, 620, heat pump, Model predictive control (MPC), building energy systems, HVAC systems, building energy management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
