
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Review of the Enabling Methodologies for Knowledge Discovery from Smart Grids Data

doi: 10.3390/en13246579
handle: 11588/867038 , 11573/1466603
The large-scale deployment of pervasive sensors and decentralized computing in modern smart grids is expected to exponentially increase the volume of data exchanged by power system applications. In this context, the research for scalable and flexible methodologies aimed at supporting rapid decisions in a data rich, but information limited environment represents a relevant issue to address. To this aim, this paper investigates the role of Knowledge Discovery from massive Datasets in smart grid computing, exploring its various application fields by considering the power system stakeholder available data and knowledge extraction needs. In particular, the aim of this paper is dual. In the first part, the authors summarize the most recent activities developed in this field by the Task Force on “Enabling Paradigms for High-Performance Computing in Wide Area Monitoring Protective and Control Systems” of the IEEE PSOPE Technologies and Innovation Subcommittee. Differently, in the second part, the authors propose the development of a data-driven forecasting methodology, which is modeled by considering the fundamental principles of Knowledge Discovery Process data workflow. Furthermore, the described methodology is applied to solve the load forecasting problem for a complex user case, in order to emphasize the potential role of knowledge discovery in supporting post processing analysis in data-rich environments, as feedback for the improvement of the forecasting performances.
- Sapienza University of Rome Italy
- University of Sannio Italy
- University Federico II of Naples Italy
- University of Sannio Italy
Technology, T, knowledge discovery, power system data compression, high-performance computing, High-performance computing; Knowledge discovery; Power system data compression; Smart grids computing, Knowledge discovery, Power system data compression, smart grids computing; knowledge discovery; power system data compression; high-performance computing, smart grids computing, High-performance computing, Smart grids computing
Technology, T, knowledge discovery, power system data compression, high-performance computing, High-performance computing; Knowledge discovery; Power system data compression; Smart grids computing, Knowledge discovery, Power system data compression, smart grids computing; knowledge discovery; power system data compression; high-performance computing, smart grids computing, High-performance computing, Smart grids computing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
