
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector

doi: 10.3390/en14041163
handle: 10447/482151
Energy consumed for air conditioning in residential and tertiary sectors accounts for a large share of global use. To reduce the environmental impacts burdening the covering of such demands, the adoption of renewable energy technologies is increasing. In this regard, this paper evaluates the energy and environmental benefits achievable by integrating a dish-Stirling concentrator into energy systems used for meeting the air conditioning demand of an office building. Two typical reference energy plants are assumed: (i) a natural gas boiler for heating purposes and air-cooled chillers for the cooling periods, and (ii) a reversible heat pump for both heating and cooling. For both systems, a dish-Stirling concentrator is assumed to operate first in electric-mode and then in a cogenerative-mode. Detailed models are adopted for plant components and implemented in the TRNSYS environment. Results show that when the concentrator is operating in electric-mode the electricity purchased from the grid decreases by about 72% for the first plant, and 65% for the second plant. Similar reductions are obtained for CO2 emissions. Even better performance may be achieved in the case of the cogenerative-mode. In the first plant, the decrease in natural gas consumption is about 85%. In the second plant, 66.7% is the percentage increase in avoided electricity purchase. The integration of the dish-Stirling system allows promising energy-saving and reduction in CO2 emissions. However, both a reduction in capital cost and financial support are needed to encourage the diffusion of this technology.
- University of Palermo Italy
thermal solar energy; dish-Stirling concentrator; air conditioning; energy saving; heat pump; cogeneration, Technology, Settore ING-IND/11 - Fisica Tecnica Ambientale, T, thermal solar energy, air conditioning, cogeneration, Thermal solar energy, dish-Stirling concentrator, heat pump, dish-Stirling, energy saving, Energy saving, Settore ING-IND/10 - Fisica Tecnica Industriale, Thermal solar energy; dish-Stirling concentrator; air conditioning; energy saving; heat pump; cogeneration
thermal solar energy; dish-Stirling concentrator; air conditioning; energy saving; heat pump; cogeneration, Technology, Settore ING-IND/11 - Fisica Tecnica Ambientale, T, thermal solar energy, air conditioning, cogeneration, Thermal solar energy, dish-Stirling concentrator, heat pump, dish-Stirling, energy saving, Energy saving, Settore ING-IND/10 - Fisica Tecnica Industriale, Thermal solar energy; dish-Stirling concentrator; air conditioning; energy saving; heat pump; cogeneration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
