
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis

doi: 10.3390/en14051320
Electrochemical water splitting is considered a promising way of producing hydrogen and oxygen for various electrochemical energy devices. An efficient single, bi-functional electrocatalyst that can perform hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is highly essential. In this work, Co@NC core-shell nanoparticles were synthesized via a simple, eco-friendly, solid-state synthesis process, using cobalt nitrate and with pyrazole as the N and C source. The morphological analysis of the resulting Co@NC nanoparticles was performed with a scanning and transmission electron microscope, which showed Co nanoparticles as the core and the pyrolysis of pyrazole organic ligand N-doped carbon derived shell structure. The unique Co@NC nanostructures had excellent redox sites for electrocatalysis, wherein the N-doped carbon shell exhibited superior electronic conductivity in the Co@NC catalyst. The resulting Co@NC nanocatalyst showed considerable HER and OER activity in an alkaline medium. The Co@NC catalyst exhibited HERs overpotentials of 243 and 170 mV at 10 mA∙cm−2 on glassy carbon and Ni foam electrodes, respectively, whereas OERs were exhibited overpotentials of 450 and 452 mV at a current density of 10 and 50 mA∙cm−2 on glassy carbon electrode and Ni foam, respectively. Moreover, the Co@NC catalyst also showed admirable durability for OERs in an alkaline medium.
- National Institute of Technology Warangal India
- Technion – Israel Institute of Technology Israel
- Keimyung University Korea (Republic of)
- Yeungnam University Korea (Republic of)
- Yeungnam University Korea (Republic of)
water splitting; cobalt catalyst; hydrogen evolution reaction; oxygen evolution reaction, Technology, oxygen evolution reaction, T, cobalt catalyst, water splitting, hydrogen evolution reaction
water splitting; cobalt catalyst; hydrogen evolution reaction; oxygen evolution reaction, Technology, oxygen evolution reaction, T, cobalt catalyst, water splitting, hydrogen evolution reaction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
