Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products

Authors: Rafał Ślefarski; Joanna Jójka; Paweł Czyżewski; Michał Gołębiewski; Radosław Jankowski; Jarosław Markowski; Aneta Magdziarz;

Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products

Abstract

There has been a gradual increase in the field of parts recovery from cars that are withdrawn from use. However, the disposal of automotive shredder residue (ASR) still remains a significant problem. ASR is refuse derived fuel (RDF), which contains mainly plastics, fiber sponges, and rubbers in different proportions, and therefore a thermal treatment of selected waste samples is applied. The presented research includes thermogravimetry (TG) analysis and differential thermogravimetric (DTG) analysis, as well as a proximate and an ultimate analysis of the ASR samples. The obtained results were processed and used as an input for modelling. The numerical calculations focused on the identification of the ASR’s average composition, the raw pyrolysis process product, its dry pyrolytic gas composition, and the combustible properties of the pyrolytic gases. The TGA analysis with three heating rate levels covered the temperature range from ambient to 800 °C. The thermal decomposition of the studied samples was in three stages confirmed with three peaks observed at the temperatures 280, 470, and 670 °C. The amount of solid residue grew with the heating rates and was in the range of 27–32 wt%. The numerical calculation of the pyrolysis process showed that only 0.46 kg of dry gas were formed from 1 kg of ASR. The gas yield increased with the rising temperature, and, at the same time, its calorific value decreased from 19.22 down to 14.16 MJ/m3. This is due to the decomposition of C6+ hydrocarbons and the promotion of CO formation. The thermodynamic parameters of the combustion process for a pyrolytic gas air mixture, such as the adiabatic flame temperature and laminar flame speed, were higher than for methane and were, respectively, 2073 °C and 1.02 m/s.

Keywords

pyrolysis of RDF; thermal pyrolysis of plastics; ASR recycling; numerical modelling of pyrolysis process; thermogravimetric analysis, thermogravimetric analysis, Technology, ASR recycling, pyrolysis of RDF, T, numerical modelling of pyrolysis process, thermal pyrolysis of plastics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold