
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios

doi: 10.3390/en14154675
In this study, we examine how Battery Storage (BES) and Thermal Storage (TES) combined with solar Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies with an increased storage duration and rental cost together with diversification would influence the Moroccan mix and to what extent the variability (i.e., adequacy risk) can be reduced; this is done using recent (2013) cost data and under various penetration scenarios. To do this, we use MERRA-2 climate reanalysis to simulate hourly demand and capacity factors (CFs) of wind, solar PV and CSP without and with increasing storage capabilities—as defined by the CSP Solar Multiple (SM) and PV Inverter Loading Ratio (ILR). We adjust these time series to observations for the four Moroccan electrical zones over the year 2018. Our objective is to maximize the renewable (RE) penetration and minimize the imbalances between RE production and consumption considering three optimization strategies. We analyze mixes along Pareto fronts using the Mean-Variance Portfolio approach—implemented in the E4CLIM model—in which we add a maximum-cost constraint to take into account the different rental costs of wind, PV and CSP. We propose a method to calculate the rental cost of storage and production technologies taking into account the constraints on storage associated with the increase of SM and ILR in the added PV-BES and CSP-TES modules, keeping the mean solar CFs fixed. We perform some load bands-reduction diagnostics to assess the reliability benefits provided by each RE technology. We find that, at low penetrations, the maximum-cost budget is not reached because a small capacity is needed. The higher the ILR for PV, the larger the share of PV in the mix compared to wind and CSP without storage is removed completely. Between PV-BES and CSP-TES, the latter is preferred as it has larger storage capacity and thus stronger impact in reducing the adequacy risk. As additional BES are installed, more than TES, PV-BES is favored. At high penetrations, optimal mixes are impacted by cost, the more so as CSP (resp., PV) with high SM (resp., ILR) are installed. Wind is preferably installed due to its high mean CF compared to cost, followed by either PV-BES or CSP/CSP-TES. Scenarios without or with medium storage capacity favor CSP/CSP-TES, while high storage duration scenarios are dominated by low-cost PV-BES. However, scenarios ignoring the storage cost and constraints provide more weight to PV-BES whatever the penetration level. We also show that significant reduction of RE variability can only be achieved through geographical diversification. Technological complementarity may only help to reduce the variance when PV and CSP are both installed without or with a small amount of storage. However, the diversification effect is slightly smaller when the SM and ILR are increased and the covariances are reduced as well since mixes become less diversified.
- École Polytechnique France
- Sorbonne Paris Cité France
- French National Centre for Scientific Research France
- Institut National des Sciences de l'Univers France
- PSL Research University France
690, Technology, diversification, 330, T, [SPI.NRJ]Engineering Sciences [physics]/Electric power, thermal energy storage, 600, [SHS.ECO]Humanities and Social Sciences/Economics and Finance, concentrated solar power, JEL: Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q4 - Energy, photovoltaic, rental cost, Morocco, battery energy storage, [SHS.ECO] Humanities and Social Sciences/Economics and Finance, concentrated solar power; thermal energy storage; photovoltaic; battery energy storage; rental cost; diversification; Morocco, [SPI.NRJ] Engineering Sciences [physics]/Electric power, jel: jel:Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q4 - Energy
690, Technology, diversification, 330, T, [SPI.NRJ]Engineering Sciences [physics]/Electric power, thermal energy storage, 600, [SHS.ECO]Humanities and Social Sciences/Economics and Finance, concentrated solar power, JEL: Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q4 - Energy, photovoltaic, rental cost, Morocco, battery energy storage, [SHS.ECO] Humanities and Social Sciences/Economics and Finance, concentrated solar power; thermal energy storage; photovoltaic; battery energy storage; rental cost; diversification; Morocco, [SPI.NRJ] Engineering Sciences [physics]/Electric power, jel: jel:Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q4 - Energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
