
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds

doi: 10.3390/en14217062
In our research, we analyzed the energy and water consumption in diamond mining and laboratory synthesis operations. We used publicly available reports issued by two market leaders, DeBeers and ALROSA, to estimate water and energy use per carat of a rough diamond. The efficiency of the two most popular synthesis technologies for artificial diamonds—High-Pressure-High-Temperature (HPHT) and Microwave-assisted Chemical Vapor Deposition (M-CVD)—was examined. We found that the modern HPHT presses, with open cooling circuits, consume about 36 kWh/ct when producing gem-quality and average-sized (near-) colorless diamonds. ALROSA and DeBeers use about 96 kWh/ct and 150 kWh/ct, respectively, including all energy required to mine. Energy consumption of M-CVD processes can be different and depends on technological conditions. Our M-CVD machine is the least energy-efficient, requiring about 215 kWh/ct in the single-crystal regime, using 2.45-GHz magnetron for the support synthesis. The M-CVD methods of individual synthetic companies IIa Technology and Ekati Mine are different from our results and equal 77 and 143 kWh/ct, respectively. Water consumption for the HPHT and M-CVD methods was insignificant: approximately zero and 0.002 m3/ct, respectively, and below 0.077 m3/ct for ALROSA-mined diamonds. This study touches upon the impact of the diamond production methods used on the carbon footprint.
- Adam Mickiewicz University in Poznań Poland
- Higher School of Economics Russian Federation
- Skolkovo Institute of Science and Technology Russian Federation
- Ioffe Institute Russian Federation
- Higher School of Economics Russian Federation
carbon footprint, Technology, high-pressure, T, high-temperature, water intake, chemical vapor deposition, diamond synthesis, energy efficiency, diamond mining
carbon footprint, Technology, high-pressure, T, high-temperature, water intake, chemical vapor deposition, diamond synthesis, energy efficiency, diamond mining
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
