
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment

doi: 10.3390/en14238018
One of the most effective technologies involving the use of lignocellulosic biomass is the production of biofuels, including methane-rich biogas. In order to increase the amount of gas produced, it is necessary to optimize the fermentation process, for example, by substrate pretreatment. The present study aimed to analyze the coupled effects of microwave radiation and the following acids: phosphoric(V) acid (H3PO4), hydrochloric acid (HCl), and sulfuric(VI) acid (H2SO4), on the destruction of a lignocellulosic complex of maize silage biomass and its susceptibility to anaerobic degradation in the methane fermentation process. The study compared the effects of plant biomass (maize silage) disintegration using microwave and conventional heating; the criterion differentiating experimental variants was the dose of acid used, i.e., 10% H3PO4, 10% HCl, and 10% H2SO4 in doses of 0.02, 0.05, 0.10, 0.20, and 0.40 g/gTS. Microwave heating caused a higher biogas production in the case of all acids tested (HCl, H2SO4, H3PO4). The highest biogas volume, exceeding 1800 L/kgVS, was produced in the variant with HCl used at a dose of 0.4 g/gTS.
Technology, microwave, methane fermentation, T, pretreatment, microwave; pretreatment; acid pretreatment; methane fermentation; biogas; lignocellulose, lignocellulose, acid pretreatment, biogas
Technology, microwave, methane fermentation, T, pretreatment, microwave; pretreatment; acid pretreatment; methane fermentation; biogas; lignocellulose, lignocellulose, acid pretreatment, biogas
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
