
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Savings and Carbon Emission Mitigation Prospective of Building’s Glazing Variety, Window-to-Wall Ratio and Wall Thickness

doi: 10.3390/en14238020
Strategic selection of glazing, its window-to-wall ratio, and wall thickness of building reduce the energy consumption in the built environment. This paper presents the experimental results of solar optical properties of five glasses: clear, tinted bronze, tinted green, bronze reflective, and polymer dispersed liquid crystal glasses. Laterite room models were modeled with four different thicknesses and four different glasses using Design Builder, and thermal simulation tests were carried out using Energy Plus. The energy savings and carbon emission mitigation prospective of a building’s glazing variety, window-to-wall ratio (WWR), and wall thickness were investigated. The results revealed that among the five window glasses studied, the polymer dispersed liquid crystal glazing window (PDLCGW) was found to be the most energy-efficient for low heat gain in laterite rooms. The laterite room with 0.23 m wall thickness and 40% PDLCGW WWR reduced 18.9% heat gain in comparison with the laterite room with 0.23 m wall thickness and 40% clear glass WWR. The laterite room of 0.23 m wall thickness with PDLCGW glazing of 40% WWR enhanced cooling cost savings up to USD 31.9 compared to the laterite room of 0.08 m wall thickness with 40% PDLCGW. The laterite room of 0.23 m wall thickness with PDLCGW glazing of 40% WWR also showed improved carbon mitigation of 516 kg of CO2/year compared to the 0.23 m wall thickness laterite room of 40% WWR with clear glass glazing. The results also showed that the laterite room with 0.23 m wall thickness and 100% clear glass WWR increased heat gain by 28.2% in comparison with the laterite room with 0.23 m wall thickness and 20% clear glass WWR. The results of this article are essential for the strategic design of buildings for energy saving and emission reduction.
- University of Exeter United Kingdom
- VELLORE INSTITUTE OF TECHNOLOGY India
- VELLORE INSTITUTE OF TECHNOLOGY India
Technology, window-to-wall ratio; wall thickness; laterite rooms; energy-efficient glasses; annual cooling cost-saving; annual carbon emission mitigation, window-to-wall ratio, T, annual carbon emission mitigation, laterite rooms, energy-efficient glasses, wall thickness, annual cooling cost-saving
Technology, window-to-wall ratio; wall thickness; laterite rooms; energy-efficient glasses; annual cooling cost-saving; annual carbon emission mitigation, window-to-wall ratio, T, annual carbon emission mitigation, laterite rooms, energy-efficient glasses, wall thickness, annual cooling cost-saving
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
