Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrochemical Characterization of Groundwaters’ Fluid Flow through the Upper Mesozoic Carbonate Geothermal Reservoirs in the Geneva Basin: An Evolution more than 15,000 Years Long

Authors: Luca Guglielmetti; Michael Heidinger; Florian Eichinger; Andrea Moscariello;

Hydrochemical Characterization of Groundwaters’ Fluid Flow through the Upper Mesozoic Carbonate Geothermal Reservoirs in the Geneva Basin: An Evolution more than 15,000 Years Long

Abstract

Groundwaters circulating in Upper Mesozoic carbonates are of great interest for geothermal heat production and storage applications in the Geneva area. This study aims at providing new insights and proposing new interpretations about the mineral-water reactions and the fluid-flow paths mechanisms across the Geneva Basin (GB). Data from previous studies are combined and improved by new ones collected from cold and hot springs and geothermal exploration wells in 2018 and 2020 in the framework of the GEothermies program and HEATSTORE project. Major ions, trace elements, and the isotopes of Oxygen, Hydrogen, Sulfur, Strontium, and Carbo have been analysed and the results show that the sampled waters have a meteoric origin, the carbonate aquifers act as preferential host rocks for geothermal waters, and partial contribution from the Cenozoic sediments can be observed in some samples. The Jura Mountains and the Saleve Ridge are the main catchment areas and an evolution from a pure Ca-HCO3 footprint for the cold springs, to a Na > Ca-HCO3 and a Na-Cl composutions, is observed at the two geothermal wells. The residence time is in the order of a few years for the cold springs and reaches up to 15–20,000 years for the deep wells.

Country
Switzerland
Related Organizations
Keywords

Technology, info:eu-repo/classification/ddc/550, Carbonate reservoirs, T, geothermal energy; fluid geochemistry; deep geothermal resources; sedimentary basin; carbonate reservoirs, Geothermal energy, Deep geothermal resources, carbonate reservoirs, fluid geochemistry, deep geothermal resources, sedimentary basin, geothermal energy, Fluid geochemistry, Sedimentary basin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold