Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks

Authors: Kons, Kalvis; Blagojević, Boško; Mola-Yudego, Blas; Prinz, Robert; Routa, Johanna; Kulisic, Biljana; Gagnon, Bruno; +2 Authors

Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks

Abstract

The use of sustainably sourced biomass is an important tool for mitigating the effects of climate change; but biomass is far from being a homogeneous resource. The aim of this study was to examine the decision-making process of industrial end-users considering biomass procurement. An online, two-part survey generated responses from 27 experienced professionals, representing a portfolio of facilities varying in size, technology, and biomass types, across Australia, Canada, Finland, and Sweden. A PAPRIKA conjoint analysis approach was used to analyze the data so that the attributes that influenced procurement decisions could be weighted and ranked. The results provided an insight into end-users’ views on factors including facility location, size, and biomass storage, handling, and procurement for different wood-based industrial services. The most important decision-making attribute appeared to be the type of biomass assortment, at individual, national, and aggregated levels. Of seven sub-categories of biomass assortments, sawdust (35%) was the most preferred type followed by stem wood chips (20%) and energy wood (15%). We concluded that, from the end-user’s perspective, a pre-defined biomass assortment is the most important factor when deciding on feedstock procurement at a bioenergy facility. These results help us better understand end-users’ perceptions of biomass properties in relation to their conversion processes and supply preferences and can inform product development and the securement of new niches in alternative business environments by existing and future biohubs.

Country
Finland
Keywords

Technology, T, bioenergy, ta4112, biohubs; expert analysis; conjoint analysis; PAPRIKA method; bioenergy, biohubs, expert analysis, conjoint analysis, PAPRIKA method

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
gold