
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
40 W Continuous Wave Ce:Nd:YAG Solar Laser through a Fused Silica Light Guide

doi: 10.3390/en15113998
The solar laser power scaling potential of a side-pumped Ce:Nd:YAG solar laser through a rectangular fused silica light guide was investigated by using a 2 m diameter parabolic concentrator. The laser head was formed by the light guide and a V-shaped pump cavity to efficiently couple and redistribute the concentrated solar radiation from the parabolic mirror to a 4 mm diameter, 35 mm length Ce(0.1 at.%):Nd(1.1 at.%):YAG laser rod. The rectangular light guide ensured a homogeneous distribution of the solar radiation along the laser rod, allowing it to withstand highly concentrated solar energy. With the full collection area of the parabolic mirror, the maximum continuous wave (cw) solar laser power of 40 W was measured. This, to the best of our knowledge, corresponds to the highest cw laser power obtained from a Ce:Nd:YAG medium pumped by solar radiation, representing an enhancement of two times over that of the previous side-pumped Ce:Nd:YAG solar laser and 1.19 times over the highest Cr:Nd:YAG solar laser power with a rectangular light-guide. This research proved that, with an appropriate pumping configuration, the Ce:Nd:YAG medium is very promising for scaling solar laser output power to a higher level.
- Universidade Nova de Lisboa Portugal
Technology, T, Ce:Nd:YAG, homogenizer, side-pumped, parabolic mirror, solar laser, light-guide
Technology, T, Ce:Nd:YAG, homogenizer, side-pumped, parabolic mirror, solar laser, light-guide
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
