Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity

Authors: Teuku Azuar Rizal; null Khairil; null Mahidin; Husni Husin; null Ahmadi; Fahrizal Nasution; Hamdani Umar;

The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity

Abstract

Despite the rapid development of electric vehicles, the shrinking number of fossil fuels that are the source of electricity remains conventional. The availability of energy sources and technology is sometimes naturally limited, high-priced, and might be politically circumscribed. This leads to an increased desirability of biodiesel due to its modest and economically higher energy density in comparison to batteries. The palm oil industry accounts for 23% of total deforestation in Indonesia. Contrary to palm oil, pangium edule (PE) is considered more sustainable and it intercrops with most of the forest’s vegetation while supplying biodiesel feedstock. A relatively higher pangium edule methyl ester (PEME) was delivered through PE feedstock, provided that it was processed with a heterogeneous catalyst, K2O/PKS-AC. This feedstock consumed a lower alcohol ratio and had a reasonably swift production process without sacrificing biodiesel quality. Therefore, this study aims to assess the performance of the PE biodiesel blend in a power generator. Furthermore, PEME was blended with diesel fuel in the variation of B0, B20, B30, B40, and B100. It was also tested with four-stroke single-cylinder diesel power generators to produce electricity. The B30 blend stands out in this experiment, achieving the highest engine power of 0.845 kW at a low load and dominating at a higher load with a minimum fuel consumption of 1.33 kg/h, the lowest BSFC of 0.243 kg/kWh, and second in BTE values at 21.16%. The result revealed that the main parameters, which include actual and specific fuel consumption, and the thermal efficiency of PE biodiesel performed satisfactorily. Although there was a slight decrease in the total power delivered, the overall performance was comparable to petroleum diesel.

Keywords

Technology, T, heterogeneous catalyst, high-speed diesel power generator, K<sub>2</sub>O/PKS-AC, pangium edule biodiesel; K<sub>2</sub>O/PKS-AC; heterogeneous catalyst; performance; high-speed diesel power generator, pangium edule biodiesel, performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold