
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Steam Electrolysis vs. Co-Electrolysis: Mechanistic Studies of Long-Term Solid Oxide Electrolysis Cells

High-temperature electrolysis using solid oxide electrolysis cells (SOECs) is an innovative technology to temporarily store unused electrical energy from renewable energy sources. However, they show continuous performance loss during long-term operation, which is the main issue preventing their widespread use. In this work, we have performed the long-term stability tests up to 1000 h under steam and co-electrolysis conditions using commercial NiO-YSZ/YSZ/GDC/LSC single cells in order to understand the degradation process. The electrolysis tests were carried out at different temperatures and fuel gas compositions. Intermittent AC- and DC- measurements were performed to characterize the single cells and to determine the responsible electrode processes for the degradation during long-term operation. An increased degradation rate is observed at 800 °C compared to 750 °C under steam electrolysis conditions. Moreover, a lower degradation rate is noticed under co-electrolysis operation in comparison to steam electrolysis operation. Finally, the post-test analyses using SEM-EDX and XRD were carried out in order to understand the degradation mechanism. The delamination of LSC is observed under steam electrolysis conditions at 800 °C, however, such delamination is not observed during co-electrolysis operation. In addition, Ni-depletion and agglomeration are observed on the fuel electrode side for all the cells.
- Helmholtz Association of German Research Centres Germany
- RWTH Aachen University Germany
- Forschungszentrum Jülich Germany
Technology, cell performance, T, solid oxide electrolysis cells (SOECs); cell performance; degradation; post-test analyses, 620, post-test analyses, solid oxide electrolysis cells (SOECs), info:eu-repo/classification/ddc/620, degradation
Technology, cell performance, T, solid oxide electrolysis cells (SOECs); cell performance; degradation; post-test analyses, 620, post-test analyses, solid oxide electrolysis cells (SOECs), info:eu-repo/classification/ddc/620, degradation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
