
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Theoretical Investigation on the Physical Properties of Zirconium Trichalcogenides, ZrS3, ZrSe3 and ZrTe3 Monolayers

doi: 10.3390/en15155479
In a recent advance, zirconium triselenide (ZrSe3) nanosheets with anisotropic and strain-tunable excitonic response were experimentally fabricated. Motivated by the aforementioned progress, we conduct first-principle calculations to explore the structural, dynamic, Raman response, electronic, single-layer exfoliation energies, and mechanical features of the ZrX3 (X = S, Se, Te) monolayers. Acquired phonon dispersion relations reveal the dynamical stability of the ZrX3 (X = S, Se, Te) monolayers. In order to isolate single-layer crystals from bulk counterparts, exfoliation energies of 0.32, 0.37, and 0.4 J/m2 are predicted for the isolation of ZrS3, ZrSe3, and ZrTe3 monolayers, which are comparable to those of graphene. ZrS3 and ZrSe3 monolayers are found to be indirect gap semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV, whereas the ZrTe3 monolayer yields a metallic character. It is shown that the ZrX3 nanosheets are relatively strong, but with highly anisotropic mechanical responses. This work provides a useful vision concerning the critical physical properties of ZrX3 (X = S, Se, Te) nanosheets.
- Tongji University China (People's Republic of)
- Persian Gulf University Iran (Islamic Republic of)
- Izmir Institute of Technology Turkey
- Persian Gulf University Iran (Islamic Republic of)
- University of Hannover Germany
exfoliation energy, Technology, phonon dispersion, electronic, T, ZrSe<sub>3</sub>, mechanical
exfoliation energy, Technology, phonon dispersion, electronic, T, ZrSe<sub>3</sub>, mechanical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
