Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions

Authors: Muteeb Haq; Ali Jafry; Muhammad Abbasi; Muhammad Jawad; Saad Ahmad; Taqi Cheema; Naseem Abbas;

Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions

Abstract

Fuel spray characteristics influence combustion, which in turn has a direct impact on engine performance and emissions. Recently, there has been an increasing interest in novel castor oil biodiesel. However, few investigations have been performed that combine both numerical and experimental biodiesel spray analyses. Hence, in this paper, we aim to explore the spray behavior of castor and jatropha biodiesel by employing numerical and experimental methods under non-evaporating, varying injection, and ambient conditions. The experimental study was carried out in a control volume vessel (CVV) at high injection and ambient pressures. The fuel atomization was modelled in ANSYS Fluent using a Lagrangian/Eulerian multiphase formulation. The results revealed that the Kelvin–Helmholtz and Rayleigh–Taylor (KHRT) model coupled with the Taylor Analogy Breakup (TAB) model provide a better estimation of the penetration length (PL) and spray cone angle (SCA) compared to the KH and TAB models. On average, Jatropha biodiesel (JB-20) and castor biodiesel (CB-20) showed a 10% to 22% longer PL, 8% to 10.6% narrower spray cone angles, and 3% to 6% less spray area, respectively, compared to diesel. The numerical predictions showed that JB-20 and CB-20 had an around 24.7–48.3% larger Sauter mean diameter (SMD) and a 38.6–73.3% average mean diameter (AMD).

Keywords

castor biodiesel, Technology, T, spray characteristics, jatropha biodiesel, spray cone angle, spray characteristics; castor biodiesel; jatropha biodiesel; ANSYS Fluent; penetration length; spray cone angle; Sauter mean diameter, ANSYS Fluent, penetration length

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold