Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas

Authors: Luigi De Simio; Sabato Iannaccone; Massimo Masi; Paolo Gobbato;

Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas

Abstract

The paper deals with the experimental study of a medium-load spark ignition engine under operation with different fuel mixtures among those deemed as promising for the transition towards carbon-free energy systems. In particular, the performance of a non-conventional ignition system, which permits the variation of the ignition energy, the spark intensity and duration, was studied fuelling the engine with 60–40% hydrogen–methane blends, three real syngas mixtures and one biogas. The paper is aimed to find the optimal ignition timing for minimum specific fuel consumption and the best setup of the ignition system for each of the fuel mixtures considered. To this end, a series of steady-state tests were performed at the dynamometer by varying the parameters of the ignition system and running the engine with surrogate hydrogen–methane–nitrogen mixtures that permit the simulation of hydrogen–methane blends, real syngas, and biogas. The results quantify the increase of spark advance associated with the decrease of the fuel quality and discuss the risk of knock onset during methane–hydrogen operation. It was demonstrated that the change of the ignition system parameters does not affect the value of optimum spark advance and, except for the ignition duration, all the parameters’ values are generally not very relevant at full load operation. In contrast, at partial load operation with low-quality syngas or high exhaust gas recirculation rate, it was found that an increase of the maximum ignition energy (to 300 mJ) allows for operation down to approximately 66% of the maximum load before combustion becomes incomplete. Further reductions, down to 25% of the maximum load, can be achieved by increasing the gap between the spark plug electrodes (from 0.25 to 0.5 mm).

Keywords

Technology, T, syngas, ignition energy, spark duration, hydrogen, spark intensity, biogas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold