Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy, Exergy, Environmental and Economic Analysis (4e) of a Solar Thermal System for Process Heating in Jamshoro, Pakistan

Authors: Junaid Ahmed; Laveet Kumar; Abdul Fatah Abbasi; Mamdouh El Haj Assad;

Energy, Exergy, Environmental and Economic Analysis (4e) of a Solar Thermal System for Process Heating in Jamshoro, Pakistan

Abstract

With an expected annual increase of 1.2%, the industrial sector already consumes over 54% of all the energy generated globally. The majority of industrial sectors presently relies on fossil fuels to fulfil their needs for heat energy, but renewable sources, especially solar energy, can be substituted for them. For an underdeveloped country such as Pakistan, its industrial sector is important for the country’s economic development and long-term growth. The use of solar thermal energy potentially offers a significant and cheap alternative to fossil fuels. The current study focuses on a process heating system based on flat-plate solar collectors, developed to provide low to moderate temperature process heat. The innovative model’s thermal efficiency and economic feasibility have undergone a thorough investigation and analysis through TRNSYS simulations. The system portrayed a 79% thermal energy efficiency and 4.31% exergy efficiency during peak hours. The optimized system for three different temperatures of 60 °C, 70 °C, and 80 °C was designed and evaluated. The system presented a total of 82 tons of CO2 prevention annually. The economic analysis consisting of three parameters, NPV, IRR and PBP, also deemed the FPC-based solar thermal system economically profitable.

Keywords

Technology, flat-plate collector, T, GHG reduction, flat-plate collector; solar thermal system; TRNSYS; process heat; GHG reduction, process heat, TRNSYS, solar thermal system

Powered by OpenAIRE graph
Found an issue? Give us feedback