
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations

Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations
Renewable energy development is growing fast and is expected to expand in the next decades in West Africa as a contribution to addressing the power demand and climate change mitigation. However, the future impacts of climate change on solar PV and the wind energy potential in the region are still unclear. This study investigates the expected future impacts of climate change on solar PV and wind energy potential over West Africa using an ensemble of three regional climate models (RCMs). Each RCM is driven by three global climate models (GCMs) from the new coordinated high-resolution output for regional evaluations (CORDEX-CORE) under the RCP8.5 scenario. Two projection periods were used: the near future (2021–2050) and the far future (2071–2100). For the model evaluation, reanalysis data from ERA5 and satellite-based climate data (SARAH-2) were used. The models and their ensemble mean (hereafter Mean) show acceptable performance for the simulations of the solar PV potential, the wind power density, and related variables with some biases. The Mean predicts a general decrease in the solar PV potential over the region of about −2% in the near future and −4% in the far future. The wind power density (WPD) is expected to increase by about 20% in the near future and 40% in the far future. The changes for solar PV potential seem to be consistent, although the intensity differs according to the RCM used. For the WPD, there are some discrepancies among the RCMs in terms of intensity and direction. This study can guide governments and policymakers in decision making for future solar and wind energy projects in the region.
Technology, info:eu-repo/classification/ddc/550, 550, ddc:550, CORDEX-CORE; regional climate modelling; climate change; renewable energy; West Africa, T, 551, renewable energy, Earth sciences, regional climate modelling, climate change, West Africa, CORDEX-CORE
Technology, info:eu-repo/classification/ddc/550, 550, ddc:550, CORDEX-CORE; regional climate modelling; climate change; renewable energy; West Africa, T, 551, renewable energy, Earth sciences, regional climate modelling, climate change, West Africa, CORDEX-CORE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
