Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production

Authors: Magdalena Zdeb; Marta Bis; Artur Przywara;

Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production

Abstract

Methane from environmentally friendly anaerobic digestion may be an alternative non-renewable source that is depleting. One of the substrates for that process may be lignocellulose-based materials. The article concerns comparing the environmental impact as well as technical and energy indicators of alternative ways of producing methane from the anaerobic digestion of Pennisetum hybrid. Five scenarios were analyzed: methane production from the anaerobic digestion of the raw grass, the grass subjected to alkaline pretreatment (with 2% NaOH solution at two temperatures), and the grass subjected to mechanical pretreatment (ground to obtain particle sizes <0.18 mm and 0.25–0.38 mm). Multi-criteria decision (MCA) analysis was carried out with the use of five indicators, including life cycle assessment results as well as methane production parameters, in order to optimize this sustainable way of bioenergy production. The purpose of this study was to identify the most cost-effective and environmentally friendly method of Pennisetum hybrid pretreatment in order to optimize the methane production process in terms of environmental, technical, and economic aspects. According to the obtained results, it was stated that the most advantageous solution for the majority of the analyzed indicators turned out to be the mechanical pretreatment with grinding the lignocellulosic biomass into a particle size <0.18 mm.

Keywords

anaerobic digestion, Technology, T, bioenergy, <i>Pennisetum hybrid</i>, methane production, bioenergy; lignocellulosic biomass pretreatment; <i>Pennisetum hybrid</i>; methane production; anaerobic digestion; multi-criteria analysis; life cycle assessment; global warming potential; cumulative energy demand; IMPACT 2002+, multi-criteria analysis, lignocellulosic biomass pretreatment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold