
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increasing Turbine Hall Safety by Using Fire-Resistant, Hydrogen-Containing Lubricant Cooling Liquid for Rotor Steel Mechanical Treatment

doi: 10.3390/en16010535
This paper is devoted to the development of hydrogen-containing, environmentally safe, fire-resistant, and corrosion-protected lubricant cooling liquids (LCLs) from vegetable oils with improved sanitary and hygienic parameters for the machining of parts and equipment made from high-strength steels for application during the interoperation period in turbine halls. The use of plant raw materials as ecologically and fire-safe LCLs increased the efficiency of LCLs when evaluating drilling steel in terms of the dependence of the stability of the cutting tool on the drilling speed. Chips formed from LCLs during turning had a compact, cylindrical appearance, and the addition of both water and coolant during turning significantly changed the morphology of the cutting particles. Using water and LCL intensified the physical and chemical destruction processes. After the use of water and LCL, the concentration of hydrogen in the cutting products of 38KHN3MFA steel increased, which indicated its participation in facilitating the destruction during machining. In the chips formed when using LCL, the amount of hydrogen increased by 2.25 times compared to the chips obtained with the dry treatment, while with coolants, it increased by 2.6 times, indicating the intense flow of decomposition products of LCL through diffusion processes in the cutting zone. Hydrogen reduces the energy costs for the destruction of structural and phase components and promotes their dispersion. The creation of 2D and 3D images allowed for a more detailed approach to the study of the influence of LCL on surface treatments.
- West Pomeranian University of Technology Poland
- West Pomeranian University of Technology Poland
- Taras Shevchenko National University of Kyiv Ukraine
- Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine Ukraine
- Lviv State University of Life Safety Ukraine
Technology, T, rapeseed, environment-friendly, green lubricating and cooling liquids, sunflower oils, high-strength steels, mechanical treatment
Technology, T, rapeseed, environment-friendly, green lubricating and cooling liquids, sunflower oils, high-strength steels, mechanical treatment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
