Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid

Authors: Shriram S. Rangarajan; Chandan Kumar Shiva; AVV Sudhakar; Umashankar Subramaniam; E. Randolph Collins; Tomonobu Senjyu;

Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid

Abstract

Intelligent inverters have the capability to interact with the grid and supply supplemental services. Solar inverters designed for the future will have the ability to self-govern, self-adapt, self-secure, and self-heal themselves. Based on the available capacity, the ancillary service rendered by a solar inverter is referred to as moonlighting. Inverters that communicate with the grid but are autonomous can switch between the grid forming mode and the grid following control mode as well. Self-adaptive grid-interactive inverters can keep their dynamics stable with the assistance of adaptive controllers. Inverters that interact with the grid are also capable of self-adaptation Grid-interactive inverters may be vulnerable to hacking in situations in which they are forced to rely on their own self-security to determine whether malicious setpoints have been entered. To restate, an inverter can be referred to as a “smart inverter” when it is self-tolerant, self-healing, and provides ancillary services. The use of artificial intelligence in solar plants in addition to moon-lighting capabilities further paves the way for its flexibility in an environment containing a smart grid. This perspective paper presents the present as well as a more futuristic outlook of solar plants that utilize artificial intelligence while moonlighting advanced capabilities as smart inverters to form the core of a smart grid. For the first time, this perspective paper presents all the novel ancillary applications of a smart inverter while employing Artificial intelligence on smart inverters. The paper’s emphasis on the Artificial Intelligence associated with PV inverters further makes them smarter in addition to ancillary services.

Keywords

Technology, T, artificial intelligence, photovoltaic systems, smart inverters, smart grid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold