Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life Cycle Assessment of an Integrated PV-ACAES System

Authors: Cocco, Daniele; Lecis, Lorenzo; Micheletto, Davide;

Life Cycle Assessment of an Integrated PV-ACAES System

Abstract

The aim of this paper is to evaluate the overall life cycle environmental impact of an adiabatic compressed air energy storage (ACAES) system, which is designed to achieve the best match between the power production of a photovoltaic (PV) power plant and the power demand from the final user. The electrical energy demand of a small town, with a maximum power load of about 10 MW, is considered a case study. The ACAES system is designed with a compressor-rated power of about 10 MW and charging and discharging times of 10 and 24 h, respectively. Different sizes of the PV plant, ranging from 20 to 40 MWp, and two different solutions for the compressed air storage, an underground cavern, and a gas pipeline, are analyzed. The aim of this analysis is to compare the impacts on human health, ecosystem quality, climate change, and resource consumption of the PV power generation plant and the integrated PV-ACAES system with those of a reference scenario in which the end user demand is met entirely by the grid. The best results in terms of a reduction in environmental impact in comparison to the reference scenario are obtained for a small PV plant (20 MW) without the ACAES section, with reductions of about 85–95% depending on the category of impact. The integration of the ACAES system improves energy self-consumption but worsens the environmental impact, especially for air storage in gas pipelines. The best configuration in terms of environmental impact is based on a 30 MW PV plant integrated with an ACAES section using an underground cavern for air storage and allows for improvements in the energy self-consumption of between 38% and 61%, with a reduction in the environmental impact compared to the reference scenario of about 80–91% depending on the impact category.

Country
Italy
Keywords

sustainable energy communities, Technology, energy storage, T, life cycle analysis, renewable energy sources, adiabatic compressed air energy storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold