
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-Method Simulation and Multi-Objective Optimization for Energy-Flexibility-Potential Assessment of Food-Production Process Cooling

doi: 10.3390/en16031514
Process cooling for food production is an energy-intensive industry with complex interactions and restrictions that complicate the ability to utilize energy-flexibility due to unforeseen consequences in production. Therefore, methods for assessing the potential flexibility in individual facilities to enable the active participation of process-cooling facilities in the electricity system are essential, but not yet well discussed in the literature. Therefore, this paper introduces an assessment method based on multi-method simulation and multi-objective optimization for investigating energy flexibility in process cooling, with a case study of a Danish process-cooling facility for canned-meat food production. Multi-method simulation is used in this paper: multi-agent-based simulation to investigate individual entities within the process-cooling system and the system’s behavior; discrete-event simulation to explore the entire process-cooling flow; and system dynamics to capture the thermophysical properties of the refrigeration unit and states of the refrigerated environment. A simulation library is developed, and is able to represent a generic production-flow of the canned-food process cooling. A data-driven symbolic-regression approach determines the complex logic of individual agents. Using a binary tuple-matrix for refrigeration-schedule optimization, the refrigeration-cycle operation is determined, based on weather forecasts, electricity price, and electricity CO2 emissions without violating individual room-temperature limits. The simulation results of one-week’s production in October 2020 show that 32% of energy costs can be saved and 822 kg of CO2 emissions can be reduced. The results thereby show the energy-flexibility potential in the process-cooling facilities, with the benefit of overall production cost and CO2 emissions reduction; at the same time, the production quality and throughput are not influenced.
- University of Southern Denmark Denmark
- "SYDDANSK UNIVERSITET Denmark
Technology, T, agent-based modeling, simulation, process cooling, industrial-energy flexibility; agent-based modeling; simulation; process cooling; multi-objective optimization, multi-objective optimization, industrial-energy flexibility
Technology, T, agent-based modeling, simulation, process cooling, industrial-energy flexibility; agent-based modeling; simulation; process cooling; multi-objective optimization, multi-objective optimization, industrial-energy flexibility
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
