Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon

Authors: Eric N. Coker; Xavier Lujan-Flores; Burl Donaldson; Nadir Yilmaz; Alpaslan Atmanli;

An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon

Abstract

The production of biochar from biomass and industrial wastes provides both environmental and economic sustainability. An effective way to ensure the sustainability of biochar is to produce high value-added activated carbon. The desirable characteristic of activated carbon is its high surface area for efficient adsorption of contaminants. Feedstocks can include a number of locally available materials with little or negative value, such as orchard slash and crop residue. In this context, it is necessary to determine and know the conversion effects of the feedstocks to be used in the production of activated carbon. In the study conducted for this purpose; several samples (piñon wood, pecan wood, hardwood, dried grass, Wyoming coal dust, Illinois coal dust, Missouri coal dust, and tire residue) of biomass and industrial waste products were investigated for their conversion into activated carbon. Small samples (approximately 0.02 g) of the feedstocks were pyrolyzed under inert or mildly oxidizing conditions in a thermal analyzer to determine their mass loss as a function of temperature and atmosphere. Once suitable conditions were established, larger quantities (up to 0.6 g) were pyrolyzed in a tube furnace and harvested for characterization of their surface area and porosity via gas sorption analysis. Among the samples used, piñon wood gave the best results, and pyrolysis temperatures between 600 and 650 °C gave the highest yield. Slow pyrolysis or hydrothermal carbonization have come to the fore as recommended production methods for the conversion of biochar, which can be produced from biomass and industrial wastes, into activated carbon.

Keywords

Technology, biomass, T, pyrolysis, industrial waste, activated carbon, conversion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
gold