Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lancaster EPrintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model

Authors: Chenglong Guo; Wanan Sheng; Dakshina G. De Silva; George Aggidis;

A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model

Abstract

Wave energy provides a renewable and clear power for the future energy mix and fights against climate change. Currently, there are many different wave energy converters, but their costs of extracting wave energy are still much higher than other matured renewables. One of the best indicators of calculating the generating cost of wave energy is the ‘levelized cost of energy’ (LCOE), which is the combined capital expenditure (CAPEX), operational expenditure (OPEX), and decommissioning cost with the inclusion of the annual energy production, discount factor, and project’s lifespan. However, the results of the LCOE are in disagreement. Hence, it is important to explore the cost breakdown of wave energy by the wave energy converter (WEC), so for finding potential ways to decrease the cost, and finally compare it with other renewable energies. Different WECs have been installed in the same place; the Wave Dragon LCOE platform is the best one, with an energy conversion of EUR 316.90/MWh, followed by Pelamis with EUR 735.94/MWh and AquaBuOY with EUR 2967.85/MWh. Even when using different locations to test, the rank of the LCOE would remain unchanged with the different value. As the CAPEX and OPEX dramatically drop, the availability and capacity factors slowly increase, and the LCOE decreases from a maximum of USD 470/MWh to a minimum of USD 120/MWh. When the discount rate is down from 11% to 6%, the LCOE reduces from USD 160/MWh to USD 102/MWh. Under the ideal condition of the optimal combination of multiple factors, in theory, the LCOE can be less than USD 0.3/KWh. To better explore the LCOE for WECs, the detailed cost elements found in the CAPEX and OPEX have been examined for the scenarios of the undiscounted, half-discounted, and discounted cost models. When the AEP is discounted, the lowest LCOE is equal to USD 1.171/kWh in scene 2 when using a five-step investment, which is below the LCOE value of USD 1.211/kWh in scene 1 when using a two-step investment. Meanwhile, the highest LCOE amounts to USD 2.416/kWh using the five-step investment, whose value is below the LCOE of a two-step investment. When using a one-step investment in scene 3, the lowest LCOE is equal to USD 0.296/kWh, which accounts for 25% of the lowest value in the five-step investment. Meanwhile, the highest LCOE amounts to USD 0.616/kWh, which accounts for 24% of the highest value in the two-step investment. The results of the case study show that a one-step investment program in the half-discounted model is superior to the multi-step investment in the discounted model. This paper examines the viability of wave energy technologies, which is a critical factor for the LCOE of wave energy; furthermore, the form of investment in the wave energy project is also important when calculating the LCOE.

Country
United Kingdom
Keywords

capital expenditure, techno-economic model, Technology, T, wave energy technology, levelized cost of energy, operational expenditure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 2
  • 1
    views
    2
    downloads
    Data sourceViewsDownloads
    Lancaster EPrints12
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Top 10%
Average
Top 10%
1
2
Green
gold