
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Economic Analysis of Methanating CO2 and Hydrogen-Rich Industrial Waste Gas in Depleted Natural Gas Reservoirs

doi: 10.3390/en16093633
This study explored underground biomethanation as a means to achieve carbon neutrality and promote carbon circular utilization by methanating CO2 and hydrogen-rich industrial waste gas in depleted natural gas reservoirs (MECHIG). This approach not only aids the development of carbon capture, utilization, and storage (CCUS) technologies, but also effectively processes industrial waste gas, thereby reducing pollutant emissions. In order to verify the feasibility of the MECHIG concept, this study builds upon the analysis of the MECHIG process overview and employs the net present value (NPV) analysis method to investigate its economic viability. Additionally, the study conducts a sensitivity analysis on six factors, namely methanation efficiency, facility site investment, hydrogen content in waste gas, natural gas prices, operation and maintenance (O&M) investment, and CO2 capture and injection prices. The results indicate the following: (1) Under the baseline scenario, the NPV of the MECHIG concept is approximately CNY 5,035,100, which suggests that the concept may be economically viable. (2) The fluctuation in natural gas prices has the most significant impact on NPV, followed by facility site investment and methanation efficiency. In contrast, the variations in hydrogen content in waste gas, O&M investment, and CO2 capture and injection prices have relatively smaller effects on NPV. (3) To ensure the economic feasibility of the concept, the acceptable fluctuation ranges for the factors of methanation efficiency, facility site investment, hydrogen content in waste gas, natural gas prices, O&M investment, and CO2 capture and injection prices are −16.78%, 5.44%, −32.14%, −4.70%, 14.86%, and 18.56%, respectively.
- Sichuan University China (People's Republic of)
- Sichuan University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
- Chinese Academy of Science (中国科学院) China (People's Republic of)
Technology, economic analysis; underground biomethanation; carbon neutrality; carbon circular utilization; NPV, T, carbon circular utilization, carbon neutrality, underground biomethanation, economic analysis, NPV
Technology, economic analysis; underground biomethanation; carbon neutrality; carbon circular utilization; NPV, T, carbon circular utilization, carbon neutrality, underground biomethanation, economic analysis, NPV
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
