Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
Digital.CSIC
Article . 2023
Data sources: Digital.CSIC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reducing Energy Consumption and CO2 Emissions in Natural Gas Preheating Stations Using Vortex Tubes

Authors: Jaime Guerrero; Antonio Alcaide-Moreno; Ana González-Espinosa; Roberto Arévalo; Lev Tunkel; María Dolores Storch de Gracia; Eduardo García-Rosales;

Reducing Energy Consumption and CO2 Emissions in Natural Gas Preheating Stations Using Vortex Tubes

Abstract

This work proposes an innovative method for adjusting the natural gas from the grid to the consumer pipeline requirements in a full-scale pressure reduction station. The use of two counterflow vortex tubes instead of the traditional boiler to preheat the gas before throttling is demonstrated as a powerful alternative. Thus, a reduction of fossil fuel consumption is reached, which amounts to 7.1% less CO2 emitted. To ensure the optimal configuration, the vortex tube was thoroughly characterized in laboratory facilities using nitrogen as the working fluid. Various operating conditions were tested to determine the most efficient setup. Computational Fluid Dynamics (CFD) simulations were conducted with nitrogen to validate the behavior of the vortex tube. Subsequently, the working fluid was switched to methane to assess the performance differences between the two gases. Finally, the vortex tubes were deployed at a full-scale installation and tested under real consumption demand. The results obtained from this study offer promising insights into the practical implementation of the proposed method for adjusting the natural gas flow, highlighting its potential for reducing fossil fuel consumption and minimizing CO2 emissions. Further improvements and refinements can be made based on these findings.

Country
Spain
Keywords

Technology, vortex tube, decarbonization, field test, T, Laboratory tests, NG preheating, Field tests, Decarbonization, laboratory test, Vortex tube, CFD

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 41
    download downloads 66
  • 41
    views
    66
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC4166
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Top 10%
Average
Average
41
66
Green
gold
Related to Research communities
Energy Research