
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study

doi: 10.3390/en16145433
By shifting towards renewable energy sources, manufacturing facilities can significantly reduce their carbon footprint. This environmental issue can be addressed by developing sustainable production through on-site renewable electricity generation and demand-side management policies. In this study, the energy required to power the manufacturing system is obtained from different energy sources: the conventional grid, on-site renewable energy, and an energy storage system. The main objective is to generate a production schedule for a flexible multi-process and multi-product manufacturing system that optimizes the utilization and procurement of electricity without affecting the final demand. A mathematical programming model is proposed to minimize both the total production costs and energy costs, considering a time-of-use pricing policy and an incentive-based program. The uncertainty in renewable energy generation, specifically under the worst-case scenario, is taken into account and the model is transformed into a robust two-stage optimization model. To solve this model, a decomposition approach based on a genetic algorithm is applied. The effectiveness of the proposed model and algorithm is tested on a real industry case involving feed-animal products. A sensitivity analysis is conducted by modifying problem parameters. Finally, a comparison with the nested Column and Constraint Generation algorithm is performed. The obtained results from these analyses validated the proposed model and algorithm.
- Université de Nantes France
- NANTES UNIVERSITE France
- Nantes Université France
- Nantes University France
- NANTES UNIVERSITE France
Technology, 330, onsite renewable, production scheduling, T, robust optimization, [SPI]Engineering Sciences [physics], production scheduling; demand-side management; onsite renewable; uncertainty; robust optimization; genetic algorithm, genetic algorithm, [INFO]Computer Science [cs], demand-side management, uncertainty
Technology, 330, onsite renewable, production scheduling, T, robust optimization, [SPI]Engineering Sciences [physics], production scheduling; demand-side management; onsite renewable; uncertainty; robust optimization; genetic algorithm, genetic algorithm, [INFO]Computer Science [cs], demand-side management, uncertainty
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
