
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Geospatial Analysis of Scour in Offshore Wind Farms

doi: 10.3390/en16155616
Climate change has highlighted the need to promote renewable energies. The offshore wind industry is growing exponentially because of some political strategies supported by various organizations, such as the European Union. The implementation of these strategies is commonly associated with significant investments, public acceptance, or achieving better installations and greater cumulative capacities. To ensure that offshore renewable energy projects could reach their ambitious targets, this study promotes the implementation of political strategies or planning decisions using data mining techniques and analytical tools. Strategic decisions based on real data analysis could help to achieve more suitable and optimal infrastructures. The scour phenomenon jeopardizes the operability of offshore wind farms, making it necessary to study its evolution over the years. In this work, extensive research on the scour phenomenon in offshore wind farms using real data (from the Lynn and Inner Dowsing offshore wind farms located in the UK) was performed, which revealed an evident lack of consideration of this phenomenon for data-driven decision-making processes. As a novelty, this research develops a detailed geospatial analysis of data, studying the possible autocorrelation of scour data measured from each turbine between 2011 and 2015. The conclusions obtained could be used to improve future planning tasks in offshore wind farms.
- Nebrija University Spain
- Universidad Politécnica de Madrid Spain
- Nebrija University Spain
Moran index, Technology, scour, spatial dependence, T, offshore wind farms, geospatial analysis, Ingeniería Civil y de la Construcción, climate change, geospatial analysis; scour; offshore wind farms; climate change; spatial dependence; Moran index, Energías Renovables
Moran index, Technology, scour, spatial dependence, T, offshore wind farms, geospatial analysis, Ingeniería Civil y de la Construcción, climate change, geospatial analysis; scour; offshore wind farms; climate change; spatial dependence; Moran index, Energías Renovables
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
