
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adaptive Wide-Area Damping Control Scheme for Smart Grids with Consideration of Signal Time Delay

doi: 10.3390/en6094841
As an important part of the smart grid, a wide-area measurement system (WAMS) provides the key technical support for power system monitoring, protection and control. But 20 uncertainties in system parameters and signal transmission time delay could worsen the damping effect and deteriorate the system stability. In the presented study, the subspace system identification technique (SIT) is used to firstly derive a low-order linear model of a power system from the measurements. Then, a novel adaptive wide-area damping control scheme for online tuning of the wide-area damping controller (WADC) parameters using the residue method is proposed. In order to eliminate the effects of the time delay to the signal transmission, a simple and practical time delay compensation algorithm is proposed to compensate the time delay in each wide-area control signal. Detailed examples, inspired by the IEEE test system under various disturbance scenarios, have been used to verify the effectiveness of the proposed adaptive wide-area damping control scheme.
- Northeast Electric Power University China (People's Republic of)
- North China Electric Power University China (People's Republic of)
- North China Electric Power University China (People's Republic of)
- Northeast Electric Power University China (People's Republic of)
Technology, wide-area damping controller (WADC), wide-area measurement system (WAMS), subspace identification technique (SIT), smart grid, inter-area oscillation, T, smart grid; inter-area oscillation; subspace identification technique (SIT); wide-area measurement system (WAMS); time delay; wide-area damping controller (WADC), time delay, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
Technology, wide-area damping controller (WADC), wide-area measurement system (WAMS), subspace identification technique (SIT), smart grid, inter-area oscillation, T, smart grid; inter-area oscillation; subspace identification technique (SIT); wide-area measurement system (WAMS); time delay; wide-area damping controller (WADC), time delay, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
