
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

doi: 10.3390/en9100731
Development and utilization of deep geothermal resources, especially a hot dry rock (HDR) geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes) and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and thermophysical parameters of strata, the heat content was calculated by 1 km × 1 km × 0.1 km cells. The result shows that in the southeastern part of Daqing Oilfield, the temperature can reach 150 °C at a depth of 3 km. The heat content within 3–5 km is 24.28 × 1021 J, wherein 68.2% exceeded 150 °C. If the recovery factor was given by 2% and the lower limit of temperature was set to be 150 °C, the most conservative estimate for recoverable HDR geothermal resource was 0.33 × 1021 J. The uncertainties of the estimation are mainly contributed to by the temperature extrapolation and the physical parameter selections.
- Xi'an Jiaotong University China (People's Republic of)
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- University of Chinese Academy of Social Sciences China (People's Republic of)
- State Key Laboratory of Lithospheric Evolution China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
Technology, T, hot dry rock; temperature; resource base; Daqing Oilfield, temperature, Daqing Oilfield, resource base, hot dry rock
Technology, T, hot dry rock; temperature; resource base; Daqing Oilfield, temperature, Daqing Oilfield, resource base, hot dry rock
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
