Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forestsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Effects on Height–Diameter Allometric Relationship Vary with Tree Species and Size for Larch Plantations in Northern and Northeastern China

Authors: Qigang Xu; Xiangdong Lei; Hao Zang; Weisheng Zeng;

Climate Change Effects on Height–Diameter Allometric Relationship Vary with Tree Species and Size for Larch Plantations in Northern and Northeastern China

Abstract

Tree height–diameter relationship is very important in forest investigation, describing forest structure and estimating carbon storage. Climate change may modify the relationship. However, our understanding of the effects of climate change on the height–diameter allometric relationship is still limited at large scales. In this study, we explored how climate change effects on the relationship varied with tree species and size for larch plantations in northern and northeastern China. Based on the repeated measurement data of 535 plots from the 6th to 8th national forest inventory of China, climate-sensitive tree height–diameter models of larch plantations in north and northeast China were developed using two-level nonlinear mixed effect (NLME) method. The final model was used to analyze the height–diameter relationship of different larch species under RCP2.6, RCP 4.5, and RCP8.5 climate change scenarios from 2010 to 2100. The adjusted coefficient of determination Radj2, mean absolute error (MAE) and root mean squared error (RMSE) of the NLME models for calibration data were 0.92, 0.76 m and 1.06 m, respectively. The inclusion of climate variables mean annual temperature (MAT) and Hargreaves climatic moisture deficit (CMD) with random effects was able to increase Radj2 by 19.5% and reduce the AIC (Akaike’s information criterion), MAE and RMSE by 22.2%, 44.5% and 41.8%, respectively. The climate sensitivity of larch species was ranked as L. gmelinii > the unidentified species group > L. principis > L. kaempferi > L. olgensis under RCP4.5, but L. gmelinii > L. principis > the unidentified species group > L. olgensis > L. kaempferi under RCP2.6 and RCP8.5. Large trees were more sensitive to climate change than small trees.

Related Organizations
Keywords

height–diameter model, climate-sensitive growth model, climate change, nonlinear mixed-effects model; height–diameter model; climate change; climate-sensitive growth model, QK900-989, Plant ecology, nonlinear mixed-effects model

Powered by OpenAIRE graph
Found an issue? Give us feedback