Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forestsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Climate Change on the Growth of Tree Species: Dendroclimatological Analysis

Authors: Archana Gauli; Prem Raj Neupane; Philip Mundhenk; Michael Köhl;

Effect of Climate Change on the Growth of Tree Species: Dendroclimatological Analysis

Abstract

Tree ring analyses can assist in revealing the effect of gradual change in climatic variables on tree growth. Dendroclimatic analyses are of particular importance in evaluating the climate variables that affect growth significantly and in determining the relative strength of different climatic factors. In this study, we investigated the growth performance of Pinus sylvestris, Picea abies, and Pseudotsuga menziesii in northern Germany using standard dendrochronological methods. The study further analyzed tree growth responses to different climatic variables over a period of a hundred years. Both response function analysis and moving correlation analysis confirmed that the climate and growth relationship is species-specific and variable and inconsistent over time. Scots pine and Douglas fir growth were stimulated mainly by the increase in winter temperatures, particularly the January, February, and March temperatures of the current year. In contrast, Norway spruce growth was stimulated mainly by the increase in precipitation in May, June, and July and the increase in temperature in March of the current year. Climate projections for central Europe foresee an increase in temperature and a decrease in the amount of summer precipitation. In a future, warmer climate with drier summers, the growth of Norway spruce might be negatively affected.

Related Organizations
Keywords

tree growth, <i>Pseudotsuga menziesii</i>, climate change, <i>Pinus sylvestris</i>, tree growth; climate change; <i>Pinus sylvestris</i>; <i>Picea abies</i>; <i>Pseudotsuga menziesii</i>, <i>Picea abies</i>, QK900-989, Plant ecology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
gold