Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forestsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of Exotic Pests on Forest Ecosystems: An Update

Authors: Qinfeng Guo; Kevin M. Potter; Hai Ren; Peixia Zhang;

Impacts of Exotic Pests on Forest Ecosystems: An Update

Abstract

Pests (e.g., insects, pathogens) affect forest communities through complex interactions with plants, other animals, and the environment. While the effects of exotic (non-native) pests on trees received broad attention and were extensively studied, fewer studies addressed the ecosystem-level consequences of these effects. Related studies so far mostly only targeted a very few dominant pests (e.g., hemlock woolly adelgid—HWA, beech bark disease—BBD, and spongy moth—SM) and were limited to aspects of the complex situation such as (1) pests’ direct physical disturbance to forest ecosystems, (2) altered geochemical elements of soils, water, and air (e.g., excretion), and (3) feedback effects from the alteration of ecosystems on plants, native insects, and present and future pest invasions. New studies also show that, in general, planted forests appear to be more prone to exotic pest invasions and thus suffer greater impacts than natural forests. Integrated studies are critically needed in the future to address (1) direct/indirect interactions of pests with ecosystem elements, (2) both short- and long-term effects, and (3) feedback effects. We discuss the implications of the new findings and corresponding management strategies.

Related Organizations
Keywords

climate change, cascading effect, forest health, insects, QK900-989, Plant ecology, indirect effects, diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research