Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forestsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Other literature type . 2013
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forests
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selection of Provenances to Adapt Tropical Pine Forestry to Climate Change on the Basis of Climate Analogs

Authors: Leibing, C.; Signer, J.; Zonneveld, M. van; Jarvis, Andy; Dvorak, W.;

Selection of Provenances to Adapt Tropical Pine Forestry to Climate Change on the Basis of Climate Analogs

Abstract

Pinus patula and Pinus tecunumanii play an important role in the forestry sector in the tropics and subtropics and, in recent decades, members of the International Tree Breeding and Conservation Program (Camcore) at North Carolina State University have established large, multi-site provenance trials for these pine species. The data collected in these trials provide valuable information about species and provenance choice for plantation establishment in many regions with different climates. Since climate is changing rapidly, it may become increasingly difficult to choose the right species and provenance to plant. In this study, growth performance of plantings in Colombia, Brazil and South Africa was correlated to the degree of climatic dissimilarity between planting sites. Results are used to assess the suitability of seed material under a changing climate for four P. patula provenances and six P. tecunumanii provenances. For each provenance, climate dissimilarities based on standardized Euclidean distances were calculated and statistically related to growth performances. We evaluated the two methods of quantifying climate dissimilarity with extensive field data based on the goodness of fit and statistical significance of the climate distance relation to differences in height growth. The best method was then used as a predictor of a provenance change in height growth. The provenance-specific models were used to predict provenance performance under different climate change scenarios. The developed provenance-specific models were able to significantly relate climate similarity to different growth performances for five out of six P. tecunumanii provenances. For P. patula provenances, we did not find any correlation. Results point towards the importance of the identification of sites with stable climates where high yields are achievable. In such sites, fast-growing P. tecunumanii provenances with a high but narrow growth optimum can be planted. At sites with climate change of uncertain direction and magnitude, the choice of P. patula provenances, with greater tolerance towards different temperature and precipitation regimes, is recommended. Our results indicate that the analysis of provenance trial data with climate similarity models helps us to (1) maintain plantation productivity in a rapidly changing environment; and (2) improve our understanding of tree species’ adaptation to a changing climate.

Country
France
Keywords

pinus, growth, management decision support tools, site factors, provenance trials; site quality modelling; management decision support tools; climate similarity; growth prediction, growth prediction, site quality modelling, climate change, pinus patula, QK900-989, provenance trials, Plant ecology, climate similarity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green
gold