
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Switching on the Big Burn of 2017

doi: 10.3390/fire1010017
Fuel, aridity, and ignition switches were all on in 2017, making it one of the largest and costliest wildfire years in the United States (U.S.) since national reporting began. Anthropogenic climate change helped flip on some of these switches rapidly in 2017, and kept them on for longer than usual. Anthropogenic changes to the fire environment will increase the likelihood of such record wildfire years in the coming decades. The 2017 wildfires in the U.S. constitute part of a shifting baseline in risks and costs; meanwhile, effective policies have lagged behind, leaving communities highly vulnerable. Policy efforts to build better and burn better, in the U.S. as well as in other nations with flammable ecosystems, will promote adaptation to increasing wildfire in a warming world.
- University of Idaho United States
- Columbia University United States
- Institute of Arctic and Alpine Research United States
- Institute of Arctic and Alpine Research United States
- Cooperative Institute for Research in Environmental Sciences United States
Climate Action, climate change, convergent disturbances, anthropogenic ignitions, wildfires, coupled extremes
Climate Action, climate change, convergent disturbances, anthropogenic ignitions, wildfires, coupled extremes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
