Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geosciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geosciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geosciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geosciences
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost

Authors: Evgeny Chuvilin; Gennadiy Tipenko; Boris Bukhanov; Vladimir Istomin; Dimitri Pissarenko;

Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost

Abstract

The thermal interaction of a gas production well with ice-rich permafrost that bears relict gas hydrates is simulated in Ansys Fluent using the enthalpy formulation of the Stefan problem. The model admits phase changes of pore ice and hydrate (ice melting and gas hydrate dissociation) upon permafrost thawing. The solution is derived from the energy conservation within the modeling domain by solving a quasilinear thermal conductivity equation. The calculations are determined for a well completion with three casing strings and the heat insulation of a gas lifting pipe down to a depth of 55 m. The thermal parameters of permafrost are selected according to laboratory and field measurements from the Bovanenkovo gas-condensate field in the Yamal Peninsula. The modeling results refer to the Bovanenkovo field area and include the size of the thawing zone around wells, with regard to free methane release as a result of gas hydrate dissociation in degrading permafrost. The radius of thawing around a gas well with noninsulated lifting pipes operating for 30 years may reach 10 m or more, while in the case of insulated lifting pipes, no thawing is expected. As predicted by the modeling for the Bovanenkovo field, methane emission upon the dissociation of gas hydrates caused by permafrost thawing around producing gas wells may reach 400,000–500,000 m3 over 30 years.

Keywords

Yamal Peninsula, QE1-996.5, thawing radius, vacuum heat insulation, gas production well, Geology, permafrost; Yamal Peninsula; gas production well; thermal modeling; thawing radius; vacuum heat insulation; gas hydrate; gas hydrate dissociation; methane emission, thermal modeling, permafrost

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold