
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area

Cultural heritage is one of the most exceptional resources characterizing the Italian territory. Archaeological heritage, i.e., the archaeological sites with different types of archaeological artifacts, strongly contributes to enriching the national and international cultural heritage. Nevertheless, it is constantly exposed to external factors, such as natural deterioration, anthropic impact, and climate-related hazards, which may compromise its conservation. In Italy, many archaeological areas are affected by significant soil settlements that involve a large part of monuments. This paper focuses on the landslide hazard assessment of the archaeological site of Pietrabbondante (Molise region, Italy). The impact of the expected rainfall regimes, according to the EURO-CORDEX projections, on slope stability conditions were evaluated through the application of a physically based model that couples a hydraulic and a mechanical model to evaluate slope stability evolution due to pore pressure changes. Given the unavoidable lack of knowledge of the geotechnical soil properties in an archaeological heritage area, the proposed method considered the random uncertainty of soil parameters by means of a probabilistic approach in order to assess the stability conditions in terms of probability of occurrence of a landslide. The results of this study provide a reference for the safety assessment and preventive conservation of archaeological areas characterized by high cultural value.
probabilistic approach, QE1-996.5, Geology, cultural heritage, climate change, reliability analysis, rainfall projections
probabilistic approach, QE1-996.5, Geology, cultural heritage, climate change, reliability analysis, rainfall projections
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
