
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
CCS Risk Assessment: Groundwater Contamination Caused by CO2

The potential contamination of underground drinking water (UDW) caused by CO2 leakage is a critical decision input for risk assessment and management decision making. This paper presents an overview of the potential alterations to UDW quality caused by CO2 and the relevant quality guidelines on drinking water. Furthermore, a framework and numerical simulator have been developed to (i) predict and assess the potential consequences of CO2 leakage on the quality of UDW; and (ii) assess the efficiency of groundwater remediation methods and scenarios for various UDW leakage conditions and alterations. The simulator was applied to a Canadian CO2 disposal site to assess the potential consequences of CO2 leakage on groundwater quality. The information, framework, and numerical tool presented here are useful for successful risk assessments and the management of CO2 capture and sequestration in Canadian geological formations.
- University of Ottawa Canada
CO<sub>2</sub>, QE1-996.5, carbon capture, risk assessment, deep geological disposal, Geology, THMC, carbon sequestration, climate change, contamination, groundwater
CO<sub>2</sub>, QE1-996.5, carbon capture, risk assessment, deep geological disposal, Geology, THMC, carbon sequestration, climate change, contamination, groundwater
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
