
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media

Ulva is a marine macroalgal genus which causes serious green tides in coastal areas worldwide. This study investigated anaerobic digestion as a way to manage Ulva waste in a leach-bed reactor coupled to an anaerobic filter (LBR-AF). Two LBR-AF systems with different filter media, blast furnace slag grains for R1, and polyvinyl chloride rings for R2, were run at increasing water replacement rates (WRRs). Both achieved efficient volatile solids reduction (68.4–87.1%) and methane yield (148–309 mL/g VS fed) at all WRRs, with the optimal WRR for maximum methane production being 100 mL/d. R1 maintained more stable methanation performance than R2, possibly due to the different surface properties (i.e., biomass retention capacity) of the filter media. Such an effect was also noted in the different behaviors of the LBR and AF between R1 and R2. The molecular analysis results revealed that the development of the microbial community structure in the reactors was primarily determined by the fermentation type, i.e., dry (LBR) or wet (AF).
- Ulsan National Institute of Science and Technology Korea (Republic of)
- UNIST (Ulsan National Institute of Science and Technology) Korea (Republic of)
- Ulsan National Institute of Science and Technology Korea (Republic of)
- UNIST (Ulsan National Institute of Science and Technology) Korea (Republic of)
660, Water, anaerobic digestion; anaerobic filter; leach-bed reactor; microbial community structure; <i>Ulva</i>; water replacement, Article, Ulva, Bioreactors, Fermentation, Anaerobiosis, Biomass, Methane, Filtration
660, Water, anaerobic digestion; anaerobic filter; leach-bed reactor; microbial community structure; <i>Ulva</i>; water replacement, Article, Ulva, Bioreactors, Fermentation, Anaerobiosis, Biomass, Methane, Filtration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
