Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Environmental Research and Public Health
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data

Authors: Ramesh P. Singh; Sarvan Kumar; Abhay K. Singh;

Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data

Abstract

The tropospheric NO2 concentration from OMI AURA always shows high concentrations of NO2 at a few locations in India, one of the high concentrations of NO2 hotspots is associated with the locations of seven coal-fired Thermal Power plants (TPPs) in Singrauli. Emissions from TPPs are among the major sources of black carbon (BC) soot in the atmosphere. Knowledge of BC emissions from TPPs is important in characterizing regional carbonaceous particulate emissions, understanding the fog/haze/smog formation, evaluating regional climate forcing, modeling aerosol optical parameters and concentrations of black carbon, and evaluating human health. Furthermore, elevated BC concentrations, over the Indo-Gangetic Plain (IGP) and the Himalayan foothills, have emerged as an important subject to estimate the effects of deposition and atmospheric warming of BC on the accelerated melting of snow and glaciers in the Himalaya. For the first time, this study reports BC concentrations and aerosol optical parameters near dense coal-fired power plants and open cast coal mining adjacent to the east IGP. In-situ measurements were carried out in Singrauli (located in south-east IGP) at a fixed site about 10 km from power plants and in transit measurements in close proximity to the plants, for few days in the month of January and March 2013. At the fixed site, BC concentration up to the 95 μgm−3 is observed with strong diurnal variations. BC concentration shows two maxima peaks during early morning and evening hours. High BC concentrations are observed in close proximity to the coal-fired TPPs (>200 μgm−3), compared to the outside domain of our study region. Co-located ground-based sunphotometer measurements of aerosol optical depth (AOD) show strong spatial variability at the fixed site, with AOD in the range 0.38–0.58, and the highest AOD in the range 0.7–0.95 near the TPPs in transit measurements (similar to the peak of BC concentrations). Additionally, the Angstrom exponent was found to be in the range 0.4–1.0 (maximum in the morning time) and highest in the proximity of TPPs (~1.0), suggesting abundance of fine particulates, whereas there was low Angstrom exponent over the surrounding coal mining areas. Low Angstrom exponent is characterized by dust from the unpaved roads and nearby coal mining areas. MODIS derived daily AOD shows a good match with the MICROTOPS AOD. The CALIPSO derived subtypes of the aerosol plot shows that the aerosols over Singrauli region are mainly dust, polluted dust, and elevated smoke. The preliminary study for few days provides information about the BC concentrations and aerosol optical properties from Singrauli (one of the NO2 hotspot locations in India). This preliminary study suggests that long-term continuous monitoring of BC is needed to understand the BC concentrations and aerosol optical properties for better quantification and the estimation of the emission to evaluate radiative forcing in the region.

Keywords

Climate, CALIPSO, India, AOD, black carbon, Article, Atmospheric Sciences, power plants, Soot, Air Pollution, Humans, Indo-Gangetic Plain, Aerosols, Air Pollutants, Dust, Satellite Communications, Other Earth Sciences, Geochemistry, Coal, coal mining, Environmental Monitoring, Power Plants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
gold