
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characteristics of Carbonate Formation from Concentrated Seawater Using CO2 Chemical Absorption Methodology

Carbon capture and storage is a popular CO2-reduction technology, and carbon capture and utilization (CCU) technology has been reported frequently over the years. However, CCU has certain disadvantages, including the requirement of high energy consumption processes such as mineral carbonation. In addition, stable metal sources are required to fix CO2. This study used concentrated seawater to supply metal ions. In addition, the selected 5 wt % amine solution changed CO2 into aqueous CO2 to reduce the additional energy required to form the metal carbonate under moderate conditions. As a result, precipitates were formed because of the reaction of carbonate radicals with metal ions in the seawater. These precipitates were analyzed by X-ray diffraction and field-emission scanning electron microscopy, and they were found to mostly consist of CaCO3 and NaCl. Furthermore, it was verified that the conversion solution maintained its CO2-loading capacity even after the solids and liquid were filtered twice. Therefore, the proposed method permits a substantial reuse of CO2 and waste seawater when sufficient metal ions are supplied. Therefore, methods to improve their purity will be developed in future studies.
- Korea Basic Science Institute Korea (Republic of)
- Analysis Group (United States) United States
- Analysis Group (United States) United States
- Korea Institute of Geoscience and Mineral Resources Korea (Republic of)
- Korea Basic Science Institute Korea (Republic of)
recovery of valuable metals, Carbonates, CCU, Carbon Dioxide, CCS, Article, Carbon, Seawater, CO<sub>2</sub> fixation, CO<sub>2</sub> conversion
recovery of valuable metals, Carbonates, CCU, Carbon Dioxide, CCS, Article, Carbon, Seawater, CO<sub>2</sub> fixation, CO<sub>2</sub> conversion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
