
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma

An empirical model to estimate global solar radiation was developed at Qomolangma Station using observed solar radiation and meteorological parameters. The predicted hourly global solar radiation agrees well with observations at the ground in 2008–2011. This model was used to calculate global solar radiation at the ground and its loss in the atmosphere due to absorbing and scattering substances in 2007–2020. A sensitivity analysis shows that the responses of global solar radiation to changes in water vapor and scattering factors (expressed as water-vapor pressure and the attenuation factor, AF, respectively) are nonlinear, and global solar radiation is more sensitive to changes in scattering than to changes in absorption. Further applying this empirical model, the albedos at the top of the atmosphere (TOA) and the surface in 2007–2020 were computed and are in line with satellite-based retrievals. During 2007–2020, the mean estimated annual global solar radiation increased by 0.22% per year, which was associated with a decrease in AF of 1.46% and an increase in water-vapor pressure of 0.37% per year. The annual mean air temperature increased by about 0.16 °C over the 14 years. Annual mean losses of solar radiation caused by absorbing and scattering substances and total loss were 2.55, 0.64, and 3.19 MJ m−2, respectively. The annual average absorbing loss was much larger than the scattering loss; their contributions to the total loss were 77.23% and 22.77%, indicating that absorbing substances play significant roles. The annual absorbing loss increased by 0.42% per year, and scattering and total losses decreased by 2.00% and 0.14% per year, respectively. The estimated and satellite-derived annual albedos increased at the TOA and decreased at the surface. This study shows that solar radiation and its interactions with atmospheric absorbing and scattering substances have played key but different roles in regional climate and climate change at the three poles.
- Institute of Atmospheric Physics China (People's Republic of)
- State Key Laboratory of Earth Surface Processes and Resource Ecology China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Institute of Tibetan Plateau Research China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
Atmosphere, Climate Change, Temperature, Article, Steam, Solar Energy, absorbing and scattering; energy; air temperature; wind speed; climate and climate change
Atmosphere, Climate Change, Temperature, Article, Steam, Solar Energy, absorbing and scattering; energy; air temperature; wind speed; climate and climate change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
