
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantifying Background Magnetic Fields at Marine Energy Sites: Challenges and Recommendations

doi: 10.3390/jmse10050687
Unknowns around the environmental effects of marine renewable energy have slowed the deployment of this emerging technology worldwide. Established testing methods are necessary to safely permit and develop marine energy devices. Magnetic fields are one potential cause of environmental effects and are created when electricity is generated and transmitted to shore. Further, the existing variation of the background magnetic field at sites that may be developed for marine energy is largely unknown, making it difficult to assess how much additional stress or impact the anthropogenic magnetic field may have. This study investigates two instruments for their ability to characterize the background magnetic fields at a potential marine energy site in Sequim Bay, WA. Based on this evaluation, this study recommends an Overhauser magnetomer for assessing the background magnetic field and demonstrates the use of this sensor at a potential marine energy site.
- Pacific Northwest National Laboratory United States
- Pacific Northwest National Laboratory United States
electromagnetic fields, Naval architecture. Shipbuilding. Marine engineering, VM1-989, electromagnetic fields; marine energy; undersea cables, GC1-1581, Oceanography, marine energy, undersea cables
electromagnetic fields, Naval architecture. Shipbuilding. Marine engineering, VM1-989, electromagnetic fields; marine energy; undersea cables, GC1-1581, Oceanography, marine energy, undersea cables
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
