Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide

Authors: Shian Li; Zhi Yang; Qiuwan Shen; Guogang Yang;

A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide

Abstract

The shipping industry is trying to use new types of fuels to meet strict pollutant emission regulations and carbon emission reduction targets. Hydrogen is one of the options for alternative fuels used in marine applications. Solid oxide electrolysis cell (SOEC) technology can be used for hydrogen production. When water and carbon dioxide are provided to SOECs, hydrogen and carbon monoxide are produced. The interconnector of SOECs plays a vital role in cell performance. In this study, a 3D mathematical model of cathode-supported planar SOECs is developed to investigate the effect of interconnector rib width on the co-electrolysis of water and carbon dioxide in the cell. The model validation is carried out by comparing the numerical results with experimental data in terms of a polarization curve. The rib width is varied from 0.2 mm to 0.8 mm with an interval of 0.1 mm. It is found that the cell voltage is decreased and then increased as the rib width increases. When the current density is 1 A/cm2, the voltages of SOECs with rib widths of 0.2 mm, 0.6 mm, and 0.8 mm are 1.272 V, 1.213 V, and 1.221 V, respectively. This demonstrates that the best performance is provided by the SOEC with a rib width of 0.6 mm. In addition, the local transport processes of SOECs with different rib widths are presented and compared in detail. This study can provide guidelines for the design of interconnectors of SOECs.

Related Organizations
Keywords

solid oxide electrolysis cells, Naval architecture. Shipbuilding. Marine engineering, marine applications, VM1-989, GC1-1581, Oceanography, interconnector design, numerical modeling, hydrogen, hydrogen; marine applications; solid oxide electrolysis cells; numerical modeling; interconnector design

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold