
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia

doi: 10.3390/jmse8030194
We present findings from a geotechnical survey for a gravity-based Wave Energy Converter (WEC) to be installed in King Island, Tasmania. The goal of this work was to assess the deployment location for a 200 kW Oscillating Water Column (OWC) and to identify possible challenges for the foundation of the structure to make it Australia’s first operational offshore OWC for a remote offshore island. The proposed location for this OWC is the southeast coast of King Island, Tasmania, approximately in a depth of ~5.5 m LAT. The survey included sub-bottom profiling, sediment cores, surficial sediment strength by penetrometer drops, seabed imagery, as well as long-term deployment (>6 months) of pressure sondes and an acoustic wave current profiler (AWAC). Our findings demonstrate that the WEC can be installed in the proposed location with significant wave height Hs ~1–1.5 m and peak period Tp of 12–14 s, and that the site exhibits sufficient sand coverage and quasisteady bearing capacity. The period between the survey and prospective deployment is only one year, demonstrating the efficiency of the survey methods (in particular, the use of the penetrometer) and OWC design but also the suitability of the candidate site for this device design.
- University of Queensland Australia
- University of Tasmania Australia
- University of Tasmania Australia
- Australian Maritime College Australia
- Australian Maritime College Australia
2205 Civil and Structural Engineering, Naval architecture. Shipbuilding. Marine engineering, Site characterization, VM1-989, Seafloor characteristics, site characterization, GC1-1581, 910, Oceanography, 2312 Water Science and Technology, OWC, owc, seafloor characteristics, wave energy converter, Wave energy converter, 2212 Ocean Engineering
2205 Civil and Structural Engineering, Naval architecture. Shipbuilding. Marine engineering, Site characterization, VM1-989, Seafloor characteristics, site characterization, GC1-1581, 910, Oceanography, 2312 Water Science and Technology, OWC, owc, seafloor characteristics, wave energy converter, Wave energy converter, 2212 Ocean Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
