
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Combined Floating Offshore Wind and Solar PV

doi: 10.3390/jmse8080576
handle: 10468/13107 , 10651/57485
To mitigate the effects of wind variability on power output, hybrid systems that combine offshore wind with other renewables are a promising option. In this work we explore the potential of combining offshore wind and solar power through a case study in Asturias (Spain)—a region where floating solutions are the only option for marine renewables due to the lack of shallow water areas, which renders bottom-fixed wind turbines inviable. Offshore wind and solar power resources and production are assessed based on high-resolution data and the technical specifications of commercial wind turbines and solar photovoltaic (PV) panels. Relative to a typical offshore wind farm, a combined offshore wind–solar farm is found to increase the capacity and the energy production per unit surface area by factors of ten and seven, respectively. In this manner, the utilization of the marine space is optimized. Moreover, the power output is significantly smoother. To quantify this benefit, a novel Power Smoothing (PS) index is introduced in this work. The PS index achieved by combining floating offshore wind and solar PV is found to be of up to 63%. Beyond the interest of hybrid systems in the case study, the advantages of combining floating wind and solar PV are extensible to other regions where marine renewable energies are being considered.
- "UNIVERSIDAD DE OVIEDO Spain
- University of Oviedo Spain
- Plymouth University United Kingdom
- University College Cork Ireland
Hybrid energy systems, hybrid energy systems, Naval architecture. Shipbuilding. Marine engineering, solar energy, marine renewable energy, VM1-989, GC1-1581, Oceanography, Resource assessment, Solar energy, wind energy, resource assessment, Marine renewable energy, Wind energy
Hybrid energy systems, hybrid energy systems, Naval architecture. Shipbuilding. Marine engineering, solar energy, marine renewable energy, VM1-989, GC1-1581, Oceanography, Resource assessment, Solar energy, wind energy, resource assessment, Marine renewable energy, Wind energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).110 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
